
Operating System Nouhad J. Rizk 1
1

Lab 3

UNIX Commands

Operating System Nouhad J. Rizk 2
2

General Format of UNIX Commands – man entries

• Because of the way in which UNIX evolved, there are
very few standards in the command syntax. In general,
command formats follow a convention:

$ command –options argument1 argument2 ... etc

• However, this is not always true. Also, the same option
may mean totally different things to different commands.

• As a result, most commands have a manual entry. The
manual entry is a file that is stored in a particular
directory (that is customizable on every system) that
contains documentation for the command. To view this
documentation for a particular command, you can use the
man command. The following example looks at the
manual entry for the ls command:

$ man ls

• Manual entries usually include the proper syntax for the
command, and explain all of the options and arguments
that the command expects. It may also include special
notes and/or about warnings about certain uses of the
command.

Operating System Nouhad J. Rizk 3
3

Copying Files – cp command

• To create a copy of a file, you can use the cp command.
The format is as follows:
$ cp source_file target_file

• The above command creates a copy of the file in the
current working directory. By using pathnames, cp can
create a copy of a file in a different directory as follows:

$ cp source_file ~/bin/target_file

• The above example creates a copy of the file called
target_file in my home directory. If you want to create a
file of the same name, but in a different directory, you
can use the dot (.) instead of a target file name:
$ cp same_filename ~/bin/.

• Note: The cp command leaves the source file alone, but it
still can potentially be destructive because it will
overwrite any target file that already exists. To prevent
possible data loss, you can use the –i option of cp that
warns the user if the target file exists. Below is a sample:
$ cp –i source_file target_file

Operating System Nouhad J. Rizk 4
4

Moving (or Renaming) Files – mv command

• The cp command creates a new file that is an independent
copy of a file without changing the source file. By
contrast, the mv command logically makes a copy of the
file and deletes the original source file. Internally, it does
this by simply changing the filename (or renaming the
file) in the inode. The format is as follows:
$ mv old_file new_file

• By using pathnames, mv can place a file in a different
directory as follows:

$ mv old_file ~/bin/new_file

• The mv command can also move the file to a different
directory using the same name by using the dot (.) instead
of a target file name:
$ mv same_filename ~/bin/.

• Note: The mv command also will overwrite any target
file that already exists. Therefore, you can also use the –i
option of mv that warns the user if the target file exists.
Below is a sample:
$ mv –i old_file new_file

Operating System Nouhad J. Rizk 5
5

Displaying Files - pg and more commands

• Thus far, we have seen how to view the contents of an
ordinary file using the cat command and the vi editor.
There are some other commands that better facilitate
looking at files (particularly large files).

• The pg command displays a file a page at a time. The
file can be scrolled using the enter key or searched using
the /<search pattern> text. On AIX systems, there is a
special file called /etc/filesystems that stores information
on all of the filesystems. This is generally a large file, so
we can use it as an example:
$ pg /etc/filesystems (type <ctrl-c> to cancel)

• The more command is similar to the pg command. The
main difference is the fact that the file can be scrolled
either a line at a time with the enter key, or a page at a
time with the space bar. Below is an example:
$ more /etc/filesystems (type <ctrl-c> to cancel)

• Often, the more command is combined with another
command using the pipe to control the output:
$ cat /etc/filesystems | more

Operating System Nouhad J. Rizk 6
6

Displaying Files – head and tail commands

• There are a few other commands that can be useful when
displaying large text files. The head command, by
default, displays the first ten lines of a file. For an
example, we can use the /etc/filesystems file again:
$ head /etc/filesystems

• The head command is useful for glancing at the format of
a large file without having to go into it.

• The tail command displays the last ten lines of a file by
default:
$ tail /etc/filesystems

• There are not too many cases where the tail command by
itself is useful. However, some files are continuously
updated. The –f option of the tail command will update
the screen as output is added to the file. An example of
this can be found with the system log (in AIX it is under
/var/sysadm/messages). The system log is constantly
updated, and the command below allows the log to be
followed:
$ tail –f /var/adm/messages (type <ctrl-c> to cancel)

Operating System Nouhad J. Rizk 7
7

Searching for Text Patterns – grep command

• The grep command is very common utility used for
searching out patterns in text files. There are many
options and uses of the grep command that we will
expand upon throughout the class. For now, we can look
at some simple examples.

• Let’s say that I have a file called birthdays in which I
store all of the names and dates of the birthdays that are
important to me. If I want to find a person’s birthday
without looking at the entire file, I can use the grep
command as follows:
$ grep India birthdays

India 12/10

$

• The –i option of the grep command says to ignore case:
$ grep –i india birthdays

India 12/10

$

• To look at all of the January birthdays:
$ grep 01 birthdays

Matt 01/28

Rob 01/27

Operating System Nouhad J. Rizk 8
8

More Searching for Text Patterns – egrep command

• The egrep command allows for multiple patterns to be
searched. These patterns are separated by an or (|)
symbol in the text string that is represented in single
quotes (‘’). Below is an example with the –i option:
$ egrep –i ‘rob|india’ birthdays

India 12/10

Rob 01/27

$

• One of the more useful ways in which to use grep and
egrep is to redirect the input of another command using
the pipe (|) symbol. Therefore, commands which
generate a great deal of output can be filtered for the
relevant data. Below is an example with the df
command. The df command produces output for every
filesystem (with the –k option specifying the size in
kilobytes). If you are only interested in the home
filesystems, then the command below will filter the
output (in this case only 1 home filesystem):

$ df –k | grep home

/dev/Less 1228800 1137740 8% 809 1% /home/ess

$

Operating System Nouhad J. Rizk 9
9

Sorting Text Files – sort command

• The sort command takes the lines of input to a specified
file and sorts them according to the options. With the
sort command, the format is important:

$ sort [-t delimiter] [+field[.column]] [-options] file

• Some of the main options are as follows:
– d – sorts in dictionary order (alphabetical)

– n – sorts in numeric order

– r – sorts in reverse order

• Sort has some common sense defaults, such as the space
being the delimiter and the first field and column.
Therefore, to sort the names in the birthday file in
alphabetical order, you can use the following:
$ sort –d birthdays

• However, if you wanted to sort the file by the birth month
in reverse order, you could use the following:
$ sort +1 –rn birthdays

Operating System Nouhad J. Rizk 10
10

Command I/O Redirection

• By default, the sort command generates output to what is
referred to as standard output. In most cases, standard output
means the screen. As we have seen, by using the redirection (>),
the output of a command can be redirected to a file. Therefore,
to create a file of the birthdays in alphabetical order, you can use
the following:

$ sort –d birthdays > alphabetical_birthdays

• Standard output is known as a file descriptor that is represented
by (>). There are two other standard file descriptors that are
associated with every command. They are standard input,
which is represented by (<), and standard error that is
represented by (2>).

• An example of redirecting standard input is using a file for the
input of the mail command. Below, we can see how this
technique sends a file to someone via mail:

$ mail user1 < letter

• All commands may potentially generate error messages. These
messages are sent to standard error (once again, usually the
screen). These can be redirected to a file as well. For example,
if we try to cat a file that does not exist, we will get an error. In
the example below, this error is redirected to an error log:

$ cat non_existent_file 2> error_log

Operating System Nouhad J. Rizk 11
11

Combined Command I/O Redirection

• As mentioned before, using (>) to redirect standard output is a
potentially dangerous technique. If a file by the same name
exists, the (>) will overwrite the file. To solve this, redirection
can be instructed to append to rather than overwrite a file using
(<<) for standard input, (>>) for standard output and (2>>) for
standard error. Below is an example:

$ cat file >> append_file

• Note: If the file specified in the >> or 2>> does not exist, one
will be created automatically.

• By combining these I/O redirection commands, commands can
utilize several files. In the example below, a file will be used for
input, a new file will be created for output and an error log will
be appended:
$ custom_command < infile > outfile 2>> error_log

• The pipe (|) operator that we have discussed previously has a
built-in I/O redirection combination mechanism. It takes the
standard output of one command and uses it as (or “pipes” it to)
the standard input of another command. Another example of a
combination takes the output of the df command, pipes it to a
search for home filesystems, sends the standard output to a new
file and appends the standard error to an error log:
$ df –k | grep home > home_filesystems 2>>error_log

Operating System Nouhad J. Rizk 12
12

Metacharacters and Wildcards

• Metacharacters are characters that have a special meaning
to the shell. We mentioned earlier that the
metacharacters (*?></:$![]{}| \`”) should not be used in
filenames. This will become abundantly clear as we
begin to use them with shell commands and programs.

• The metacharacters make the foundation of what is
known in UNIX as regular expressions. The regular
expressions form a language of pattern matching in text
that is generally understood by most UNIX programs.
These are used to greatly enhance shell commands and
programs.

• Wildcards are a type of metacharacter that are used to
substitute filenames that are of certain criteria. They are
used with many UNIX commands. The wildcards are as
follows:

* – substitutes all characters

? – substitutes a single character

! – substitutes all characters except this character

[] – substitutes a range of characters

Operating System Nouhad J. Rizk 13
13

Examples of Wildcards – find and grep
• Many of the commands that we have learned up to this point can and

often do make use of wildcards. Below are examples:
$ ls test? (lists files with test + 1 char such as test1 & test2)
$ cp * ~/. (copy everything in the current directory to my home directory)

$ rm –r * (recursively remove everything in current directory ***VERY DANGEROUS)

$ ls *[1-5] (lists any files ending in 1-5 such as matt1 and test5)

$ mv [!n]* ~/. (move all files except beginning with an n to my home directory)

• The find command is a powerful tool with many options. It searches a
directory hierarchy for files and can perform a number of different
functions on the files it finds. In the simple example below, find
locates all of the files in the current directory structure that begin with
the letter m and prints them to the screen:
$ find . –name m* -print

• The grep command is also interesting when combined with wildcards.
For an example, let’s say that I have a sub-directory under my home
directory called personal where I keep information about people. If I
wanted to know everything in there about my wife India, grep would
print a line for each occurrence of the name and also print which files
in which they reside. Below is the example:
$ grep India ~/personal/*

/u/ds59478/personal/birthdays:India 12/10

/u/ds59478/personal/email:India IndiaRS@aol.com

/u/ds59478/personal/phone:India (972) 506-0843

$

	Lab 3UNIX Commands
	General Format of UNIX Commands – man entries
	Copying Files – cp command
	Moving (or Renaming) Files – mv command
	Displaying Files - pg and more commands
	Displaying Files – head and tail commands
	Searching for Text Patterns – grep command
	More Searching for Text Patterns – egrep command
	Sorting Text Files – sort command
	Command I/O Redirection
	Combined Command I/O Redirection
	Metacharacters and Wildcards
	Examples of Wildcards – find and grep

